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Abstract

Many organisms have a mechanism for down regulating the expression of non-synapsed chromosomes and chromosomal
regions during meiosis. This phenomenon is thought to function in genome defense. During early meiosis in Caenorhabditis
elegans, unpaired chromosomes (e.g., the male X chromosome) become enriched for a modification associated with
heterochromatin and transcriptional repression, dimethylation of histone H3 on lysine 9 (H3K9me2). This enrichment
requires activity of the cellular RNA-directed RNA polymerase, EGO-1. Here we use genetic mutation, RNA interference,
immunofluorescence microscopy, fluorescence in situ hybridization, and molecular cloning methods to identify and analyze
three additional regulators of meiotic H3K9me2 distribution: CSR-1 (a Piwi/PAZ/Argonaute protein), EKL-1 (a Tudor domain
protein), and DRH-3 (a DEAH/D-box helicase). In csr-1, ekl-1, and drh-3 mutant males, we observed a reduction in H3K9me2
accumulation on the unpaired X chromosome and an increase in H3K9me2 accumulation on paired autosomes relative to
controls. We observed a similar shift in H3K9me2 pattern in hermaphrodites that carry unpaired chromosomes. Based on
several assays, we conclude that ectopic H3K9me2 accumulates on paired and synapsed chromosomes in these mutants.
We propose alternative models for how a small RNA-mediated pathway may regulate H3K9me2 accumulation during
meiosis. We also describe the germline phenotypes of csr-1, ekl-1, and drh-3 mutants. Our genetic data suggest that these
factors, together with EGO-1, participate in a regulatory network to promote diverse aspects of development.
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Introduction

During sexual reproduction, mutations existing in the gametes will

be inherited by the offspring. Therefore, it is essential that gametes

contain accurate copies of the genetic information. Through

evolution, multiple mechanisms have been developed to safeguard

gamete quality. One such mechanism may be a process referred to as

meiotic silencing of unpaired chromatin (MSUC) whereby genes

located on unpaired chromatin are silenced during first meiotic

prophase. This is a widespread phenomenon that has been described

in fungi, nematodes, and mammals (for reviews, see [1–3]). While it

naturally involves sex chromosomes in the heterogametic sex,

meiotic silencing also targets unsynapsed regions that may be present

due to mutation or chromosome rearrangement [4–6]. MSUC may

function as a surveillance mechanism to protect against detrimental

conditions such as aneuploidy or expression of genetic parasites (e.g.,

transposable elements) that are inserted in one homolog and would

not properly align during meiosis [1,7]. MSUC may also function in

the segregation of non-homologous chromosomes, e.g., the mam-

malian X and Y chromosome [3].

Distinct mechanisms of MSUC appear to function in different

species, although some common components and features are

involved. MSUC in nematodes and mammals occurs at the

transcriptional level. In C. elegans, regions of unpaired chromatin,

e.g. the male X chromosome, accumulate a histone modification

associated with transcriptional silencing, H3K9me2 [4]. High

levels of H3K9me2 also accumulate on free chromosomal

duplications and chromosomes that fail to synapse due to

mutations in both the XX and XO germ line [4]. Few X-linked

genes are expressed in the male germ line, therefore it is difficult to

correlate H3K9me2 accumulation with repression of gene

expression in males. However, transcription of X-linked oogene-

sis-specific genes decreases dramatically in sexually transformed

XO hermaphrodites, suggesting that the H3K9me2 marks indeed

correlate with gene silencing [8]. The C. elegans meiotic silencing

machinery may involve small RNA, e.g., small interfering (si)

RNA, as activity of the RNA-directed RNA polymerase (RdRP),

EGO-1, is required for H3K9me2 enrichment on unpaired

regions [9]. In mouse, as in C. elegans, histone modifications

associated with gene silencing accumulate on regions of unpaired

chromatin, e.g. the male X and Y chromosomes and chromosomal

translocations in both XX and XO germ lines. These regions also

accumulate histone variants, e.g., macroH2A1.2 and cH2AX

[5,10–13,] (see also [3]). Mammalian meiotic silencing is known to
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require machinery closely related to the DNA repair pathways (see

[1]). In the filamentus fungus, Neurospora crassa, MSUC (also called

meiotic silencing by unpaired DNA, MSUD) requires the activity

of: an RNA-directed RNA polymerase (RdRP), SAD-1 [14]; a

member of the Argonaute family of RNA binding proteins, SMS-2

[15]; and a Dicer endonuclease-like protein, DCL-1 [16]. N. crassa

meiotic silencing appears to occur at a post-transcriptional level

via a mechanism related to RNA interference (RNAi) (for a review

of the core RNAi machinery, see [17]). For example, meiotic

silencing elicited by a chromosomal deletion will target paired

copies of the deleted region (present as transgenes) that are located

at a distinct site [14]. This behavior is not observed in C. elegans,

e.g., the presence of a chromosomal duplication does not lead to

H3K9me2 accumulation on paired copies of the intact chromo-

some [4,8].

Small RNA has been implicated in heterochromatin assembly in

a number of systems (for reviews, see [18–20]). Mechanistic details

appear to vary from one system to another, as the mechanisms

involve different constellations of proteins. The best-studied case,

heterochromatin assembly at centromeric repeats in the yeast,

Schizosaccharomyces pombe, requires Dicer, RdRP, and Argonaute

(Ago) activity [21–25]. Here, Ago and endogenous siRNAs

participate in an RNA-induced transcriptional silencing (RITS)

complex whose chromatin association is sufficient for directing

H3K9me2 accumulation [18,19,25]. Dicer and Argonaute activity

have also been shown to promote centromeric heterochromatin

assembly in Drosophila melanogaster, an organism that apparently

lacks cellular RdRP [26,27]. Similarly, Dicer, Argonaute, and

RNA helicase activities are linked to heterochromatin formation

and the subsequent elimination of repeated DNA sequences in the

micronuclei of Tetrahymena thermophila [28,29] (for a review, see

[30]). In mammals, as well, a growing body of evidence suggests

that promoter transcripts and an Argonaute protein may

participate in transcriptional regulation [31–33]. In general, these

transcriptional silencing mechanism(s) are poorly understood, and

the identified RNAi factors might act indirectly, e.g., as

participants in the post-transcriptional regulation of genes whose

products function directly in chromatin regulation. Interestingly,

Dicer activity does not appear to be required for meiotic

H3K9me2 enrichment on unpaired chromatin in C. elegans,

suggesting that microRNAs and other Dicer-dependent RNA

products do not participate in the regulatory process [9].

To identify additional components of the MSUC machinery in

C. elegans, we surveyed candidate genes to identify those whose loss

of function altered the pattern of H3K9me2 accumulation during

meiosis. Here, we report the identification of CSR-1, EKL-1, and

DRH-3 as additional regulators of meiotic H3K9me2 accumula-

tion. These proteins function in RNAi, and DRH-3 (like EGO-1)

is implicated in the biogenesis of endogenous siRNAs [34,35].

Here, we provide evidence that H3K9me2 does not accumulate

properly on unpaired chromatin in csr-1, ekl-1, and drh-3 mutants

and is mis-targeted to correctly paired and synapsed chromatin.

Moreover, the germline phenotypes of csr-1, ekl-1, and drh-3

mutants are complex and share some features with the ego-1

phenotype. As previously shown for ego-1 [36,37], csr-1, ekl-1, and

drh-3 interact genetically with glp-1, which encodes the germline

Notch-type receptor required for germ cell proliferation. We

discuss alternative models for how these factors may participate in

the regulation of meiotic chromatin.

Results

Identification of new regulators of meiotic H3K9me2
distribution

We used two approaches to identify candidate genes whose

products might participate in meiotic silencing: (i) we compiled a

list of factors that had been implicated in small RNA-mediated

processes, including Argonaute proteins and putative chromatin-

associated proteins [38–52] (Table 1); and (ii) we surveyed a set of

ego mutants, previously isolated in our screens for genetic

enhancers of glp-1 (ego mutations), whose phenotypes resemble

that of ego-1 [36] (J. Spoerke and E. Maine, unpublished data). ego-

1 mutants have a specific developmental phenotype that is not

commonly observed, but is characteristic of some other mutants

isolated in our ego screens.

We subjected these candidates to two tests. First, we used

indirect immunofluorescence to evaluate the meiotic H3K9me2

staining pattern in available mutants or after depletion via RNAi

(see Materials and Methods). Our RNAi assays were performed

using him-8 mutants, as the hermaphrodite X chromosomes

remain unpaired/unsynapsed and therefore become enriched for

H3K9me2. Second, we tested type (i) candidates genes for an Ego

phenotype using RNAi-mediated knockdown in animals with a

weak glp-1 loss of function mutation, glp-1(bn18ts) at 20uC (see

Materials and Methods).

We identified four genes from the candidate gene list whose

activities influenced meiotic H3K9me2 distribution: csr-1, ekl-1,

drh-3, and sin-3 (Table 1). Three of these genes were also identified

as Ego: csr-1, ekl-1, and drh-3 (Table 1). We also identified three ego

mutants with altered H3K9me2 distribution, ego(om55), ego(om56),

and ego(om83). The three ego mutations mapped close to ekl-1 and

drh-3 (see Materials and Methods); we cloned them in order to

determine whether they represented alleles of ekl-1, drh-3, and/or

other genes whose products function in meiotic chromatin

regulation. Our data indicate that ego(om56) and ego(om83) are

alleles of ekl-1, and ego(om55) is an allele of drh-3 (Figure 1) (see

Materials and Methods). Intriguingly, CSR-1 (an Argonaute

protein), DRH-3 (a Dicer-related DEAH/D-box helicase), and

EKL-1 (a Tudor domain protein) all, like EGO-1, promote RNAi

(Table 1). Hence, we hypothesize that these factors may work

together to regulate meiotic H3K9me2 accumulation via a

mechanism that involves small RNA, e.g., endogenous siRNA.

Author Summary

DNA within a cell’s nucleus is packaged together with
proteins into a higher order structure called chromatin. In
its simplest form, chromatin consists of DNA and a set of
proteins called histones, arranged so that the DNA strand
is wrapped around histone protein clusters. This basic
chromatin structure can be modified in various ways to
regulate access to the genetic information encoded in the
DNA. Such regulation is critical for cellular function and
development of the organism. As cells form gametes, they
undergo a specialized type of cell division called meiosis.
During meiosis, chromatin is regulated in specific ways to
ensure proper development of the embryo. During meiosis
in the nematode C. elegans, the chromatin structure of the
single male X chromosome depends on an RNA-directed
RNA polymerase called EGO-1. Here, we identify three
more regulators of meiotic chromatin, the proteins CSR-1,
EKL-1, and DRH-3. Our data suggest that these proteins
collaborate with EGO-1 to ensure that paired chromo-
somes (autosomes and hermaphrodite X chromosomes)
are regulated correctly and in a manner distinct from the
male X chromosome. Our findings suggest that these four
proteins participate in a mechanism to ensure proper gene
expression for gamete formation.

C. elegans Meiotic Silencing
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Table 1. Candidate genes surveyed for H3K9me2 and Ego phenotypes.

Annotation Gene Protein family/domain Small RNA processes [ref] D H3K9me2 Ego

C01G5.2 prg-2 Piwi-AGO Family Tc3 silence [41] 2 2

C04F12.1 Piwi-AGO Family Soma RNAi [39,42] 2 2

C16C10.3 Piwi-AGO Family NR 2 2

C18E3.7 ppw-1 Piwi-AGO Family Gln RNAi, T silence [42,43] 2 2

D2030.6 prg-1 Piwi-AGO Family Tc3 silence, 21U-RNA [41,43–45] 2 2

F20D12.1 csr-1 Piwi-AGO Family Co-sup, RNAi, Slicer [40,42,46] + +

F55A12.1 Piwi-AGO Family NR 2 2

F56A6.1 sago-2 Piwi-AGO Family Soma RNAi [42] 2 2

F58G1.1 Piwi-AGO Family Gln/soma RNAi [42] 2 2

K12B6.1 sago-1 Piwi-AGO Family Soma RNAi [40,42] 2 2

R04A9.2 nrde-3 Piwi-AGO Family siRNA nuclear import [47] 2 2

R06C7.1 Piwi-AGO Family NR 2 2

R09A1.1 ergo-1 Piwi-AGO Family endo-RNAi [42] 2 2

T07D3.7 alg-2 Piwi-AGO Family miRNA function [48] 2 2

T22B3.2 Piwi-AGO Family NR 2 2

T22H9.3 Piwi-AGO Family NR 2 2

T23D8.7 Piwi-AGO Family NR 2 2

Y110A7A.18 ppw-2 Piwi-AGO Family Co-sup, T silence [40,49] 2 2

Y49F6A.1 Piwi-AGO Family NR 2 2

ZK1248.7 Piwi-AGO Family NR 2 2

ZK218.8 Piwi-AGO Family NR

ZK757.3 Piwi-AGO Family NR 2 2

C01B10.1 drh-2 DExH-box helicase RNAi [50] 2 2

D2005.5 drh-3 DEAH/D-box helicase RNAi, siRNA biogenesis [34,46] + +

F15B10.2 drh-1 DExH-box helicase RNAi [39,50] 2 2

C08B11.2 hda-2 Class I HDAC NR 2 ND

C10E2.3 hda-4 Class II HDAC NR 2 ND

C35A5.9 Class IV HDAC NR 2 ND

D2096.8 NAP-related RNAi, T silence [39,49] 2 2

F02E9.4 sin-3 SIN3 HDAC RNAi [39] + 2

F22D6.6 ekl-1 Tudor domains Co-sup, RNAi [39,40] + +

F45E4.9 hmg-5 HMG box Co-sup [36] 2 2

F54F2.2 zfp-1 Various1 RNAi [39,51] 2 2

K04G7.3 ogt-1 See footnote2 Predicted SIN-3 interactor [52] 2 2

M04B2.3 gfl-1 See footnote3 RNAi [39,51] 2 2

T22B7.1 egl-13 HMG-box4 Co-sup [40] 2 2

W02D9.8 HMG box Co-sup [40] 2 2

ZK1127.7 cin-4 DNA topo IIA5 RNAi [39] 2 2

T09E8.1 Novel6 Co-sup [40] 2 2

All genes were tested using a deletion mutant (see Materials and Methods) except for the following, for which we knocked down the protein using RNAi: C08B11.2/hda-
2, C10E2.8/hda-4, C35A5.9, K04G7.3/ogt-1, T22B7.1/egl-13/cog-2, and ZK1127.7/cin-4. Ego phenotype means all germ cells prematurely exited mitosis, entered meiosis,
and underwent gametogenesis. D H3K9me2 means a change in the distribution and/or level of H3K9me2 in the meiotic germ line. We previously reported that
mutations in the Argonaute genes rde-1 and alg-1 did not visibly alter the pattern of H3K9me2 accumulation during meiosis [9]. Additional putative Piwi/Argonaute
genes, previously reported in the literature and now thought to be pseudogenes, are not listed here (http://www.wormbase.org). Gln, germ line; Co-sup, co-
suppression; T silence, transposon silencing; Tc3 silence, Tc3 silencing; 21U-RNA, 21U-RNA regulation; HDAC, histone deacetylase; NAP, nucleosome assembly protein.
NR, none reported.
1Contains leucine zipper, Zinc finger, and PHD/LAP domains; homologous to human AF10.
2O-linked N-acetylglucosamine transferase.
3Homology to human glioma-amplified sequence 41, yeast transcription factor AF-9, and human transcription factor ENL.
4Related to transcription factor SOX5.
5DNA topoisomerase, type IIA.
6Loss of gene function causes sterility.
doi:10.1371/journal.pgen.1000624.t001
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We will focus this report on the role of CSR-1, EKL-1, and DRH-

3 in meiotic silencing and will discuss SIN-3 in a future report.

Meiotic H3K9me2 distribution in csr-1, ekl-1, and drh-3
mutants

In wild type males, the X chromosome preferentially becomes

enriched for H3K9me2 during early pachytene stage and maintains

this enrichment until germ cells become primary spermatocytes [4]

(Figure 2A). Other chromosomes exhibit a relatively low level of

H3K9me2. In ego-1 null mutant males (hereafter designated ego-1

males), X chromosome enrichment fails to occur, and all

chromosomes accumulate a variable and low level of H3K9me2

[9] (Figure 2C). In csr-1(tm892), ekl-1(om83), and drh-3(tm1217)

males, H3K9me2 was distributed more broadly across the

chromosomes than in controls, and a single focus was rarely

observed (Figure 2B, 2D, 2E). Several foci were visible in some

nuclei, which also tended to have a higher overall level of the mark.

We quantified the relative proportion of nuclei with each labeling

pattern, and the proportion of nuclei with normal meiotic versus

abnormal chromosomal morphology (Table 2). It was difficult to

quantify the H3K9me2 level since the labeling intensity varied even

among control preparations. However, we obtained a general

measure of labeling intensity by comparing images captured at

equivalent exposures. The majority of nuclei with normal pachytene

morphology lacked a strong focus of H3K9me2 labeling when

compared with wild type (ranging from 57% of pachytene nuclei in

csr-1 males to 83% of pachytene nuclei in ekl-1 males) (Figure 3). A

smaller proportion of the nuclei with normal morphology had

multiple bright H3K9me2 foci and/or a higher overall level of

H3K9me2 (ranging from 14% in ekl-1 to 34% in csr-1 males)

(Figure 2B, Figure 3). In such nuclei, one of the foci may correspond

to the X chromosome. The H3K9me2 distribution appeared

essentially normal in a small proportion of nuclei (ranging from 3%

in ekl-1 to 9% in csr-1 males), particularly nuclei located in the

proximal region of the gonad arm. Among morphologically

abnormal nuclei, the most striking ones were large and had diffuse

chromosome morphology; these nuclei, which may have been

polyploid, tended to have multiple H3K9me2 foci and a high

overall level of H3K9me2 (Figure 2B, Table 2).

To identify the X chromosome, we co-labeled H3K9me2 and a

histone ‘‘activating’’ mark that is present on autosomes but absent

from the X chromosomes in germ cells, H3K4me2 [4,53]. We

consistently observed a chromosome without H3K4me2, which

presumably corresponds to the X chromosome (Figure 3). We

observed a variable level of H3K9me2 associated with this

chromosome; in many nuclei, the level was substantially reduced

compared with controls. We also observed frequent H3K9me2

enrichment co-localizing with H3K4me2 (Figure 3). We inter-

preted this phenotype to reflect enrichment for H3K9me2 on

autosomal sites in the absence of CSR-1, EKL-1, or DRH-3

activity.

In contrast to the male (XO) germ line, we observed no

obvious defect in H3K9me2 accumulation in mutant hermaph-

rodite (XX) germ lines (data not shown). We considered two

possibilities for why this might be the case: CSR-1, EKL-1, and

DRH-3 function might affect chromatin assembly only in male

germ cells or, alternatively, only in germ cells with significant

unpaired chromatin (e.g., unpaired chromosomes or a chromo-

somal duplication). To distinguish between these hypotheses, we

examined H3K9me2 accumulation in mutant hermaphrodites

where the X chromosomes did not pair or synapse (genotype ekl-

1(om83); him-8 and drh-3(tm1276); him-8) and in hermaphrodites

carrying a free chromosomal duplication (genotype sDp3;csr-

1(tm892), ekl-1;sDp3, and drh-3;sDp3). In these five strains,

H3K9me2 foci were reduced in intensity relative to controls,

and there appeared to be a mild increase in H3K9me2 levels on

other chromatin (Figure 4). To distinguish between autosomes

and X chromosomes in drh-3;him-8 and ekl-1;him-8 hermaphro-

dites, we co-labeled H3K4me2 and H3K9me2 marks. In both

control and experimental animals, we consistently identified

chromosomal regions that failed to accumulate H3K4me2 and

were presumably the X chromosomes (Figure S1). Consistent

with the data presented in Figure 4, these H3K4me2-negative

regions were highly enriched for H3K9me2 in him-8 controls,

but much less so in the mutants. These results suggest that

unpaired regions are not as highly targeted for H3K9me2 in csr-

1, ekl-1, and drh-3 hermaphrodites as they are in wildtype

hermaphrodites.

Figure 1. drh-3 and ekl-1 mutations isolated as genetic enhancers of glp-1. The locations of ego alleles within (A) drh-3 and (B) ekl-1 are
shown. ego alleles were isolated in screens for genetic enhancers of glp-1 sterility. Annotated open reading frame designation (e.g., D2005.5) and
nucleotide position on LGI (e.g., I:7820836) are indicated. Boxes represent exons and lines represent introns. Nucleotide and amino acid changes are
indicated. The position of the drh-3(tm1217) deletion is indicated for reference. 39 UTRs are shaded yellow; 59 UTRs are not represented.
doi:10.1371/journal.pgen.1000624.g001
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csr-1, ekl-1, and drh-3 mutants have multiple germline
developmental defects

We compared the developmental phenotypes of ego-1, csr-1, ekl-1

and drh-3 mutants in order to address further the functional

relationship among the four gene products (see Materials and

Methods). As discussed above, loss-of-function mutations in each

gene enhanced a mild GLP-1/Notch defect in the germ line. We

observed additional germline defects in young adult hermaphro-

dites and males of each genotype, as follows: a moderately reduced

number of germ cells; a larger than normal proportion of

Figure 2. Abnormal H3K9me2 accumulation in csr-1, ekl-1, and drh-3 mutants. Each panel shows germline nuclei co-labeled with DAPI to
visualize DNA and polyclonal anti-H3K9me2 antibody. Tissue was dissected and fixed at 24 hr post-L4 stage. The distal-to-proximal axis is oriented left
to right in each image. All images were taken at the same exposure. (A and B) Features of the wild type (N2) and csr-1(tm892) male germ lines are
shown. Distal ends (asterisk), mitotic zones (MZ), transition zones (TZ), pachytene zones (PZ), and primary spermatocytes are indicated. In both germ
lines, H3K9me2 is first detected at early pachytene stage. (A’) In the N2 germ line, a single strong focus of H3K9me2 labeling corresponds to the single
X chromosome (as described in [4]); other chromosomes accumulate a low level of H3K9me2 (as described in [9]). (B) In the csr-1(tm892) germ line,
H3K9me2 labeling is more broadly distributed than in wildtype; a single strong focus of labeling is often absent. (B’) An example of a large,
morphologically abnormal nucleus is circled. See Results. (B’0) As in wildtype, H3K9me2 levels decrease as germ cells become primary spermatocytes.
Circled nucleus has the ‘‘elevated’’ H3K9me2 pattern referred to in Table 2 and described in Results. (C–I) Each panel shows H3K9me2 distribution in
pachytene nuclei at a position corresponding to the region shown in (B0-B’0). (C) The X chromosome fails to accumulate a high level of H3K9me2 in
ego-1(om84) meiotic nuclei; a basal level of H3K9me2 is broadly distributed over all chromosomes. (D,E) H3K9me2 distribution in drh-3(tm1217) and
ekl-1(om56) single mutants resembles that observed in csr-1(tm892) animals (see (B0)). (F–I) H3K9me2 distribution in ego-1;csr-1, ego-1 drh-3, ekl-1 ego-
1, and ekl-1 drh-3 double mutants resembles that observed in csr-1, ekl-1, and drh-3 single mutants. Images were captured on a Zeiss Axioscope.
doi:10.1371/journal.pgen.1000624.g002
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Table 2. Meiotic H3K9me2 distribution patterns in csr-1, ekl-1, and drh-3 mutant males.

Genotype Nuclear morphology H3K9me2 label: Elevated Dispersed 1 focus N

csr-1 pachytene1 34% 57% 9% 164

abnormal2 78% 22% 0% 18

ekl-1;him-8 pachytene1 14% 83% 3% 216

abnormal2 85% 15% 0% 13

drh-3;him-8 pachytene1 23% 65% 11% 126

abnormal2 80% 20% 0% 5

See Results and Figures 2 and 3 for descriptions and representative images of the three H3K9me2 distribution patterns (elevated, dispersed, and single focus). ‘‘1 focus’’
indicates that a single strong focus of H3K9me2 labeling was observed. N, number of nuclei counted.
1These nuclei have recognizable pachytene morphology.
2These abnormal nuclei are large and have a diffuse chromosomal morphology not typical of meiosis. The percent of nuclei within the pachytene zone with this
morphology was: 10% for csr-1; 6% for ekl-1;him-8; and 4% for drh-3;him-8.

doi:10.1371/journal.pgen.1000624.t002

Figure 3. Relative distribution of H3K4me2 and H3K9me2 marks during XO meiosis. Each panel shows meiotic nuclei co-labeled with
DAPI to visualize DNA, polyclonal antibody against H3K4me2, and monoclonal antibody against H3K9me2. In wildtype germ cells, the X chromosome
(arrow) lacks H3K4me2 (*) and becomes highly enriched for H3K9me2 (arrow). In contrast, autosomes become highly enriched for H3K4me2 and
accumulate a very low level of H3K9me2. In csr-1, ekl-1, and drh-3 nuclei, one chromosomal region lacks H3K4me2 (*) and contains a variable level of
H3K9me2 (arrow); this is presumably the X chromosome. In some cases, the X chromosome lacks detectable H3K9me2 altogether (*). Other
chromosomes contain substantial H3K4me2 and a variable level of H3K9me2 (arrowheads). Circled nuclei are examples of the ‘‘elevated’’ H3K9me2
pattern referred to in Table 2; most other nuclei have the ‘‘dispersed’’ H3K9me2 pattern referred to in Table 2. See Results. Images were captured on a
Zeiss Axioscope at the same exposure and processed in a similar manner.
doi:10.1371/journal.pgen.1000624.g003
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leptotene-zygotene nuclei; a smaller than normal proportion of

pachytene nuclei; a delay in the sperm-oocyte switch; and

abnormal oogenesis (Figure 5D, 5G, 5H, Table 3, data not

shown). ekl-1, csr-1, and drh-3 germ lines contained some large

nuclei with a diffuse chromosomal morphology quite distinct from

pachytene and diplotene nuclei; we previously observed morpho-

logically similar nuclei in ego-1 mutants [35,54] (see Figures 2 and

3, Table 2). 100% of hermaphrodites produced abnormal, small

oocytes and 100% of their progeny died as embryos. As adults

aged, oocytes tended to back up around the loop and there was a

reduction in the proportion of the germ line in mitosis and first

meiotic prophase. These observations are consistent with previous

reports of sterility in csr-1 mutants [40,42,55] and ekl-1 mutants

[40] and an oogenesis defect in drh-3 mutants [34,56].

Wild type oocytes arrest at diakinesis with six pairs of bivalents

visible per nucleus (Figure 5A). In csr-1, ekl-1 and drh-3 mutants, a

subset of oocyte nuclei appeared to contain unpaired homologous

chromosomes (univalents), as previously observed for ego-1

(Figure 5H, and data not shown) [37]. The penetrance of this

phenotype was variable with respect to the number of univalents

per nucleus and the proportion of diakinesis nuclei with this

abnormal morphology. The phenotype was more penetrant in ekl-

1 mutants (50% of gonad arms contained at least one oocyte with

univalents) than in ego-1, csr-1, or drh-3 mutants (#18% of gonad

arms contained oocytes with univalents) (Table 3) [37]. The

presence of univalents was rarely fully penetrant within any single

oocyte; instead, for individual mutants, the number of abnormal

chromosome figures ranged from 7 (ego-1, csr-1, drh-3) to 11 (drh-3)

(Table 3) indicating asynapsis or desynapsis of 1–5 chromosome

pairs. The presence of both a protracted leptotene-zygotene region

and univalent chromosomes at diakinesis, could indicate pairing,

synapsis, and/or recombination defects in these mutants [57].

Spermatogenesis in 100% of ekl-1 and drh-3 mutants (males and

hermaphrodites) was visibly abnormal in a manner that we did not

observe in ego-1 or csr-1 mutants (Figure 5D and 5I versus Figure 5B

and 5G, Table 3). ekl-1 and drh-3 sperm nuclei were abnormally

large and variably sized, as if chromatin condensation or

chromosome segregation was impaired. In addition, male sperm

did not become tightly packed in the vas deferens (as they do in

wild type).

Analysis of double mutant phenotypes suggested a complex

relationship among ego-1, csr-1, ekl-1, and drh-3 with respect to

germline development. (See Materials and Methods for generation

of double mutants.) Several aspects of the phenotype were more

severe in at least a subset of double mutants. For example, the

frequency of animals with univalents at diakinesis was higher

among ekl-1 drh-3, ego-1 drh-3, and ekl-1 ego-1 double mutants than

in ekl-1, ego-1, and drh-3 single mutants reflecting either a

Figure 4. Reduced H3K9me2 levels in csr-1, ekl-1, and drh-3 hermaphrodites carrying unpaired X chromosomes or a chromosomal
duplication. Each panel shows hermaphrodite germline nuclei co-labeled with DAPI to visualize DNA and with polyclonal anti-H3K9me2 antibody.
All images were taken at the same exposure. Unpaired chromatin was introduced into hermaphrodite germ cells using (A) a him-8 mutation to
prevent X chromosome pairing or (B) the free duplication, sDp3. (A) In him-8 controls, H3K9me2 foci are visible (arrowheads). In drh-3;him-8 and ekl-
1;him-8 mutants, unpaired X chromosomes fail to become enriched for H3K9me2 (arrows). (B) In control nuclei, H3K9me2 is elevated on sDp3 (fat
arrows); occasional nuclei have two foci that are interpreted to reflect partial pairing of sDp3 with an intact LGIII, resulting in H3K9me2 enrichment on
the unpaired portions of sDp3 and LGIII. In sDp3;csr-1 and ekl-1;sDp3 nuclei, the H3K9me2 labeling is no longer concentrated as a single strong focus,
but instead is found on multiple chromosomes (arrows) and in some cases is reduced on sDp3 relative to wild type. Images were captured on a Zeiss
Axioscope.
doi:10.1371/journal.pgen.1000624.g004
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synergistic or additive effect (Table 3). Interestingly, although the

frequency of animals showing the phenotype increased, the degree

of asynapsis in individual nuclei was not significantly higher in

double mutants compared with single mutants (Table 3). In

contrast, the univalent frequency in ego-1;csr-1 double mutants was

similar to that observed in csr-1 and ego-1 single mutants (Table 3).

We observed the sperm condensation defect in ekl-1 ego-1 and ego-1

drh-3 double mutants, indicating it is epistatic to the more normal

sperm morphology present in ego-1 single mutants (Figure 5E and

5F’). Interestingly, we observed a similar, although less severe,

condensation defect in a subset of ego-1;csr-1 double mutants

(Table 3). The implications of these double mutant phenotypes are

considered in the Discussion.

In situ hybridization data compiled by the Nematode Expression

Pattern Database (NEXTDB, http://nematode.lab.nig.ac.jp) are

consistent with our phenotypic observations. The highest concen-

trations of csr-1, ekl-1, and drh-3 transcripts were detected in the

gonad and in early embryos, suggesting major functions in the

germ line and early embryo. Similarly, ego-1 mRNA is highly

enriched in the germ line [37] and the NEXTDB observed ego-1

transcripts in the gonad and early embryo. The severity of the

oogenesis defect in these mutants precludes our analysis of

embryonic phenotypes. However, RNAi-based surveys of gene

function have reported embryonic defects associated with weak

knockdown of all four genes [55–56,58–63].

Pairing, synapsis, and meiotic H3K9me2 levels
The presence of univalent chromosomes in csr-1, ekl-1, and drh-3

diakinesis nuclei was particularly relevant to the H3K9me2 defect.

In C. elegans, univalents can result from defective homolog pairing,

synapsis, and/or double-strand break (DSB) formation [64,65].

Both pairing and synapsis have been implicated as important in

the process by which meiotic silencing is triggered, whereas DSB

formation/repair has not: H3K9me2 enrichment is observed on

autosomes in XO mutants with pairing and/or synapsis defects,

but not in mutants defective only in double-strand break formation

(A. Fedotov and W. Kelly, manuscript in preparation). Therefore,

we considered that autosomal H3K9me2 levels might be elevated

Figure 5. Examples of gametogenesis defects associated with loss of csr-1, drh-3, and ekl-1 function. Each panel shows a portion of a
dissected gonad arm stained with DAPI to visualize DNA. Known or putative null alleles are used in all cases. (A) Wildtype (N2) hermaphrodite with
oocyte nuclei (open arrowheads) and sperm (Sp, line) are indicated. Note that sperm are essentially uniform in size. Oocyte nuclei at diakinesis have
six bivalent chromosomes. (B) ego-1 sperm are essentially uniform in size. (C) ekl-1drh-3, (E) ego-1drh-3, and (H) ekl-1 germ lines contain small,
crowded oocytes with univalent chromosomes (closed arrowheads). (C) ekl-1drh-3, (D) drh-3, (E) ego-1drh-3, and (F’) (some) ekl-1 ego-1 germ lines
contain variably sized sperm (arrows). (F) Some ekl-1 ego-1 germ lines contain sperm of essentially uniform size. (E and G) Morphologically abnormal
nuclei are visible amidst diakinesis (oocyte) nuclei in ego-1drh-3 and csr-1 germ lines (fat arrows). In addition, csr-1 meiotic nuclei are often clumped
together, leaving gaps without nuclei (bracket).
doi:10.1371/journal.pgen.1000624.g005
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in csr-1, ekl-1, and drh-3 mutants due to (i) mis-targeting of the

chromatin-modifying machinery to inappropriate sites or (ii)

appropriate targeting to autosomal regions due to a meiotic

pairing and/or synapsis defect. Consequently, we decided to

evaluate pairing and synapsis in these mutants. We evaluated

homolog pairing using fluorescent in situ hybridization (FISH) to

visualize the 5S ribosomal RNA gene cluster located on LGV (see

Materials and Methods). We detected a minor pairing defect in

drh-3 and ekl-1 mutants (Text S1, Table S1, Table S2, Table S3).

However, the frequency of nuclei where chromosome V was

unpaired was much lower than the frequency of nuclei with

ectopic H3K9me2 (Text S1, Table S1, Table S2, Table S3). We

concluded that H3K9me2 must have accumulated on paired

chromosomes in these mutants. We investigated synaptonemal

complex integrity by co-labeling two proteins involved in synapsis,

HIM-3 and SYP-1 [66–68] (see Materials and Methods). Our data

did not reveal a defect in synapsis in mutant males (Figure S2) or

hermaphrodites (Figure S3, Figure S4). See Text S1 for further

details.

H3K9me2 accumulates at paired and synapsed regions in
csr-1, ekl-1, and drh-3 mutants

To better address the relationship between pairing and

H3K9me2 accumulation, we performed simultaneous LGV FISH

and H3K9me2 immunolabeling on drh-3 males. drh-3 was chosen

because it has the strongest pairing defect of the three mutants

examined (Table S1, Table S2). We observed nuclei where

elevated H3K9me2 and a single LGV FISH signal coincided,

consistent with elevated H3K9me2 on the paired LGVs

(Figure 6A, 6C). We also observed nuclei where H3K9me2

accumulated at sites distinct from one or both of two FISH signals,

consistent with low H3K9me2 on unpaired chromosome Vs

(Figure 6B). Given these results and the data presented in Table 2,

Table S1, and Text S1, we conclude that the H3K9me2

distribution in drh-3, ekl-1, and csr-1 pachytene nuclei is likely to

be independent of the (mild) pairing defect in these mutants.

We also evaluated whether H3K9me2 accumulates at synapsed

chromatin in csr-1, ekl-1, and drh-3 mutant males. To do so, we co-

labeled H3K9me2 and SYP-1 (see Materials and Methods). In

wild type males, we consistently observed a single chromosomal

region that failed to accumulate SYP-1 and was highly enriched

for H3K9me2 (Figure 7). In csr-1, ekl-1, and drh-3 mutant males,

we typically observed a single SYP-1(-) region that accumulated a

variable level of H3K9me2. In addition, we observed H3K9me2

at other chromosomal regions that contained SYP-1 (Figure 7). At

the limit of sensitivity of our data, these results are consistent with

the hypothesis that elevated H3K9me2 accumulation occurs at

synapsed regions in these germ cells.

EGO-1 is not required for the elevated autosomal
H3K9me2 observed in csr-1, ekl-1, and drh-3 mutants

Our previous work indicated that the loss of EGO-1 activity

prevents H3K9me2 accumulation on unpaired chromatin [9].

Here, we tested whether EGO-1 activity is required for ectopic

H3K9me2 accumulation by determining the H3K9me2 distribu-

tion in ego-1;csr-1, ego-1 drh-3, and ekl-1 ego-1 double mutant males.

The H3K9me2 distribution in all three double mutants resembled

the distribution we had observed in csr-1, ekl-1, and drh-3 single

mutant males (Figure 2F, 2G, 2H). Therefore, EGO-1 activity is

not necessary for ectopic H3K9me2 to accumulate on autosomes.

Moreover, since EGO-1 is required for the H3K9me2 accumu-

lation diagnostic of meiotic silencing, this result strengthens our

conclusion that the autosomal H3K9me2 in csr-1, ekl-1, and drh-3

males is mis-targeted to paired chromatin. We also note that, in

double mutants such as ekl-1 drh-3, the H3K9me2 distribution

resembled that observed in the two corresponding single mutants

(Figure 2I, and data not shown).

Loss of HIM-17 function combined with CSR-1, EKL-1, or
DRH-3 function produces severely abnormal germ lines

We sought to determine whether the pattern of elevated

autosomal H3K9me2 in csr-1, ekl-1, and drh-3 mutants depended

Table 3. Gametogenesis defects associated with csr-1, ekl-1, drh-3, and ego-1 single and double mutants.

Genotype % No oocytes (N)1 % Irregular sperm (N)2 % Univalents (N)3 #Chromosomes4

Wildtype 0 (.100) 0 (.100) 0 (.100) NA

ego-1 9 (33) 0 (33) 18 (11) 7.760.2 (7–9)

csr-1 68 (34) 0 (34) 18 (11) 7.360.3 (7–8)

drh-3 44 (43) 100 (43) 9 (11) 8.460.4 (7–11)

ekl-1 24 (50) 100 (50) 50 (32) 9.760.2 (9–10)

ego-1 drh-3 40 (56) 100 (56) 100 (33) 8.660.3 (7–12)

ekl-1 ego-1 39 (36) 100 (36)* 69 (13) 9.660.3 (7–11)

ego-1; csr-1 56 (34) 6 (34)* 17 (18) 8.860.5 (7–12)

ekl-1 drh-3 27 (59) 100 (59) 92 (26) 9.060.4 (7–11)

ekl-1; csr-1 7 (42) 100 (21) ND ND

Alleles used were ego-1(om84), ekl-1(om83), drh-3(tm1276), and csr-1(tm892). Animals were grown at 20uC and characterized at 24 hr post-L4 stage. At a slightly later
time point (66–72 hr post-L1 stage), most animals contain oocytes, hence the absence of oocytes indicates a delay in the sperm-to-oocyte switch. (N), number of germ
lines counted.
1Percent of germ lines where oocytes were absent at the time of assay; note that wildtype germ lines all contain oocytes at this stage.
2Percent of germ lines where sperm nuclear morphology was highly irregular.
*Abnormal sperm morphology was less severe than for the other genotypes (see Results).
3Percent of oogenic germ lines with univalents; typically, a subset of diakinesis nuclei contained univalents and a subset did not.
4Number of chromosomes at diakinesis in nuclei with at least one set of univalent chromosomes. Nuclei with 6 bivalents are not included in the calculation. Standard
error of the mean (6#) is indicated. The range of observed values is indicated in brackets; e.g., among ego-1 nuclei with univalent chromosomes, a range of 7–9
chromosomes were observed. NA, not applicable. ND, univalents were observed, but not counted.

doi:10.1371/journal.pgen.1000624.t003
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on HIM-17 activity. HIM-17 is a chromatin-associated protein

reported to be required for normal accumulation of H3K9me2 per

se in both XX and XO germ lines [69]. We constructed him-17;csr-

1, ekl-1;him-17, and drh-3;him-17 double mutants and found that

they have severe germline defects similar to those previously

described for ego-1;him-17 double mutants [9] (data not shown).

Unfortunately, nuclear morphology was abnormal throughout the

severely impaired germ line, prohibiting meaningful interpretation

of the H3K9me2 labeling pattern.

Discussion

Here, we demonstrate that CSR-1, EKL-1, and DRH-3

activities promote the normal accumulation of a chromatin

silencing modification, H3K9me2, during meiosis. Our data

suggest that, in csr-1, ekl-1, and drh-3 mutants, H3K9me2 fails to

accumulate to normal levels on chromatin that is unpaired and

unsynapsed (e.g., the single male X and the two him-8

hermaphrodite X chromosomes) and accumulates inappropriately

on chromatin that is both paired and synapsed (e.g., autosomes).

We interpret these findings to mean that the normal targeting

mechanism is disrupted in csr-1, ekl-1, and drh-3 mutants.

Therefore, CSR-1, EKL-1, and DRH-3 act, directly or indirectly,

to target H3K9me2 to appropriate (unpaired) sites and/or prevent

accumulation at inappropriate (paired) sites.

Alternative models for the regulation of H3K9me2
accumulation

Biochemical analysis of CSR-1 and DRH-3 has provided direct

insight into their functions. AGO proteins are known to localize to

target RNAs via interaction with a siRNA ‘‘guide’’ molecule [38].

Using in vitro assays, Aoki et al. [46] demonstrated that CSR-1 has

Slicer endonuclease activity and binds to secondary (2u) siRNAs

that are produced as a consequence of RdRP activity on target

mRNA during the RNAi process. DRH-3 activity promotes the

formation of diverse classes of small RNAs [34,35]. In vitro, DRH-3

interacts physically with the somatic RdRP, RRF-1, and is

required for 2u siRNA production [46]. By analogy, we

hypothesize that DRH-3 may promote EGO-1 activity in the

germ line.

Although little is known about the biochemical function of

EKL-1, we hypothesize that it may bind methylated proteins via

its Tudor domains [70]. Tudor domains from several mammalian

proteins have been shown to bind methylated peptides in vitro,

specifically peptides corresponding to histone H3 tails methylated

at either lysine 4 or 9 and histone H4 tail methylated at lysine 20

[71]. Similarly, the DNA repair function of Saccharomyces cerevisiae

RAD9 apparently requires binding to methylated H3 lysine 79 via

its Tudor domain [72].

We consider two general models for how an EGO-1/CSR-1/

EKL-1/DRH-3 pathway might function in meiotic chromatin

regulation. One model is that these factors directly target the

chromatin-modifying machinery to unpaired regions, perhaps via

a mechanism similar to that which directs H3K9me2 to

centromeric repeats in S. pombe. There is increasing evidence that

siRNAs and other small RNAs participate in transcriptional

silencing in many organisms, although thus far the mechanisms

are poorly understood [19]. Ultimately, this pathway may establish

a self-amplifying loop to attract histone methyltransferase

(HMTase) to unpaired chromatin and/or exclude HMTase

Figure 6. Distribution of H3K9me2 relative to 5S rDNA FISH signal. Panels show representative pachytene nuclei from a drh-3 XO germ line
co-labeled to detect 5S rDNA (by FISH) and H3K9me2. (A,C) The single FISH signal is adjacent to a region with high H3K9me2 label. (B) Two FISH
signals are detected, one of which is well-separated from regions of high H3K9me2 label. Images were captured on a Leica DRMXA microscope.
doi:10.1371/journal.pgen.1000624.g006
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activity from paired chromatin. We speculate that chromatin-

associated RNA pol II transcripts [73–76] act as templates for

EGO-1 RdRP activity and are essential for establishment of the

self-amplifying loop. One possible scenario is that all or a subset of

these proteins are initially recruited to unpaired chromatin via

interaction with a factor that is lost or masked by successful pairing

and/or synapsis. As an amplification loop is established, the

HMTase is preferentially recruited to unpaired regions. In the

absence of EGO-1 activity, the HMTase may be recruited to

specific sites but be unable to methylate chromatin effectively. In

the absence of CSR-1, EKL-1, or DRH-3 activity, the HMTase

may not be properly recruited or retained and therefore be free to

modify chromatin in an unregulated manner, perhaps through

enhanced interaction with another competing complex.

As an alternative model, EGO-1, CSR-1, EKL-1, and DRH-3

may influence H3K9me2 by participating in post-transcriptional

and/or transcriptional silencing mechanisms that ultimately regulate

the expression of genes whose products discriminate between paired

and unpaired chromatin. This model is complicated by the fact that

we would expect direct targets of such a hypothetical silencing

mechanism to be up-regulated upon loss of silencing activity.

Therefore, we propose that loss of silencing activity would indirectly

down-regulate the discriminatory factors, perhaps by allowing over-

expression of a negative regulator. EGO-1 might regulate a different

constellation of genes than do CSR-1, EKL-1, and DRH-3, resulting

in the different H3K9me2 patterns in ego-1 versus csr-1, drh-3, and ekl-

1 mutants. Identification of specific sites on unpaired chromatin that

are targeted for H3K9me2 accumulation, and investigation of

whether EGO-1, CSR-1, EKL-1, and/or DRH-3 associate with

those sites will help to distinguish between these alternative models.

A larger regulatory framework for EGO-1 activity
Our phenotypic analysis of CSR-1, EKL-1, and DRH-3

suggests that they participate in a complex regulatory network to

promote development of the germ line. Their activity is critical for

maintenance of germline proliferation, meiotic progression,

spermatogenesis, and oogenesis. Previous reports in the literature

have indicated that EGO-1, EKL-1, DRH-3, and CSR-1 may

promote other aspects of development, including embryonic

viability and proper chromosome segregation [34,42,58]. Most

strikingly, Rocheleau et al. [63] demonstrated that reduction in

function of each of these four genes enhanced the lethality of a

weak ksr-1 (kinase suppressor of ras) mutation. ksr-1 lethality results

from a defect in excretory duct formation due to impaired Ras

signaling [77]. Rocheleau et al. proposed that EGO-1, CSR-1,

DRH-3, and EKL-1 may affect the development of the excretory

duct cell by promoting the biogenesis/activity of a set of germline

small RNAs whose activity ultimately regulates expression of

factors important for the KSR-1/KSR-2 Ras-ERK signaling

pathway. We have now demonstrated the importance of this non-

coding RNA pathway in meiotic chromatin regulation and other

aspects of germline development.

Our genetic data suggest that EGO-1, CSR-1, EKL-1, and

DRH-3 participate in a complex regulatory network. Based on

strict epistasis criteria, EGO-1 and CSR-1 act in a common

genetic pathway to promote bivalent stability at diakinesis, and this

pathway works in parallel with DRH-3 and EKL-1 pathways.

Given what is known about the biochemical functions of these

proteins, perhaps the simplest way to think about these genetic

pathways is that they may involve distinct classes of small RNAs

(e.g., [35,45,78]). The EGO-1/CSR-1/EKL-1/DRH-3 pathway

Figure 7. SYP-1 vs H3K9me2 distribution in csr-1, ekl-1, and drh-3 mutants. Each panel shows pachytene nuclei in an adult germ line co-
labeled with DAPI to visualize DNA, anti-SYP-1 to visualize the synaptonemal complex, and anti-H3K9me2. As indicated in Figure S2, Figure S3, and
Figure S4, SYP-1 is associated with all chromosomes except the partnerless male X (arrows). In wildtype male germ cells, the strong focus of H3K9me2
staining corresponds to the X chromosome (arrows). In mutants, H3K9me2 foci can be found associated with SYP-1 (arrowheads), indicating
H3K9me2 enrichment on synapsed chromosomes. Images were captured on a Zeiss Axioscope.
doi:10.1371/journal.pgen.1000624.g007
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may be responsible for biogenesis/function of one class of small

RNA, while other classes of small RNA may require EKl-1 and/or

DRH-3, but rely on a different RdRP and/or AGO protein in

place of EGO-1 and CSR-1. Indeed, DRH-3 is required for

production of many classes of small RNAs, while individual

RdRPs function in biogenesis of a subset of such RNAs [34,35].

Analysis of sperm nuclear morphological detects also suggested a

complex pattern of regulation by multiple small RNA-mediated

pathways. In this case, the most important pathway(s) require(s)

DRH-3 and EKL-1 activity while EGO-1 and CSR-1 activity

appear to play only a minor role in this process. Hence, analysis of

mutant phenotypes can provide insight into the relationships

among different small RNA-mediated pathways.

Materials and Methods

Nematode strains and culture
C. elegans strains were cultured using standard methods as

described [79]. C. elegans var Bristol (N2) is the wild type parent

strain of all the mutants used in this study. The following mutations,

chromosomal deficiencies, duplications, and reciprocal transloca-

tions were used: LG (linkage group) I: C04F12.1 tm1637, drh-

3(tm1217), drh-3(om55) (this report), ego-1(om84), ekl-1(om56, om83)

(this report), F55A12.1 ok1078, R06C7.1 ok1074, ppw-1(pk1425),

ppw-2(tm1120), prg-1(tm872), sago-2(tm894), sin-3(tm1276), T23D8.7

tm1163, unc-13(e51), unc-15(e73), unc-55(e402), ozDf5, nDf25; LG II:

alg-2(ok304), C06A1.4 tm887, F58G1.1 tm1019, Y49F6A.1 tm1127,

ZK1248.7 tm1135; LG III: C16C10.3 tm1200, tag-76(ok1041),

unc-32(e189), zfp-1(ok554), sDf121, sDp3 (III;f), hT2[bli-4(e937)

let-?(q782) qIs48](I,III); LG IV: csr-1(tm892), drh-1(tm1329),

drh-2(tm728), gfl-1(gk321), him-8(e1489), him-17(e2806, ok424),

M03D4.6 tm1144, prg-2(tm1094), T22B3.2 tm1155, nT1[qI-

s51](IV,V); LG V: ergo-1(tm1860), sago-1(tm1195), T22H9.3

tm1186, ZK218.8 tm1324; LG X: R04A9.2 tm1116. The tm, ok,

and gk alleles are deletions and therefore likely to be null or extreme

loss-of-function. ego-1(om84) is a protein null [54]. ekl-1(om83) is a

deletion allele (this report). An integrated transgenic array,

ccIs4251[myo-3::Ngfp-lacZ+myo-3::Mtgfp], was used as an LGI

marker. Information on specific genes and alleles can be found at

Wormbase (http://www.wormbase.org) unless otherwise noted.

Multiple mutant strains were generated using standard genetic

strategies. PCR analysis was routinely used to confirm the

presence of deletion mutations. The following strategy was used

to build cis-doubles. To generate ego-1(om84) drh-3(tm1217) double

mutants, we generated an ego-1(om84) unc-55(e402)/unc-13(e51)

drh-3(tm1217) male/hermaphrodite strain and mated non-Unc

males with unc-13(e51) unc-55(e402) hermaphrodites. Non-Unc-13,

non-Unc-55 progeny were recovered; PCR analysis was used to

identify the lines carrying both ego-1(om84) and drh-3(tm1217)

deletions (i.e., ego-1 drh-3/unc13 unc-55). The ego-1(om84) drh-

3(tm1217) chromosome was then balanced with hT2[bli-4(e937) let-

?(q782) qIs48]. ekl-1(om83) ego-1(om84) and ekl-1(om83) drh-

3(tm1217) double mutants were constructed by the same general

strategy (using different marker mutations in one case).

RNAi
RNAi was done by the feeding method as described [80] except

that double strand RNA production was sometimes induced by

0.2% lactose rather than 1 mM IPTG. Multiple L4 N2 and glp-

1(bn18) hermaphrodites were placed onto each bacterial ‘‘feeding’’

strain at 25uC and 20uC, respectively. Adult F1 progeny were

scored for sterility using a dissecting microscope. Steriles were

examined at high magnification as described [81] to determine

whether they had a Glp-1 sterile phenotype (premature meiotic

entry of all germ cells).

Single nucleotide polymorphism mapping and DNA
sequencing

ego mutations om55, om56, and om83 were recovered in genetic

screens for enhancers of glp-1(bn18ts) as previously described [36]

using either ethylmethane sulfonate (EMS) (om55, om56) or

trimethylpsoralen/UV irradiation (om83) as the mutagen. Three-

factor and deletion mapping placed the three mutations on the

right arm of LGI. Based on complementation tests, om56 and om83

comprise a single complementation group while om55 comprises

another.

Three-factor mapping placed om56 and om83 between dpy-5 and

unc-13. We subsequently mapped om56 relative to single nucleotide

polymorphisms (SNPs), ultimately localizing it between SNPs at

nucleotide position ,7050 K and 7120 K. This interval was

predicted to encode 19 genes, including ekl-1 (see www.wormbase.

org). DNA from the ekl-1 gene region was amplified from ego(om83)

and ego(om56) mutants and sequenced. In ego(om83) animals, the

ekl-1 open reading frame (ORF) contained a 110 nucleotide

deletion and concomitant single nucleotide insertion (at the

deletion site); the net 109 nucleotide deletion is predicted to shift

the ORF, resulting in production of a truncated product

comprising 314 amino acids (Figure 1A). In ego(om56) mutants,

the ekl-1 ORF contained a single nucleotide substitution, inserting

a stop codon for tryptophan 319 (Figure 1A). Primers used to

sequence the ekl-1 region were (59R39): ekl1-1r cgattgcgcgac-

gaatctgatc; ekl1-2f ggaagttgttctctccactg; ekl1-2r ccgaataagcag-

taaactaagg; ekll-3f cactggagagtggcaaagag; ekl1-3r ctccgcacacttg-

cattgc; ekl1-0r cctgaatagcttgccacgg; ekl1-4f cgttcatttccaacagattg.

Three-factor mapping placed om55 within an ,244 kb region

between gld-1 and unc-55 that includes drh-3. om55 failed to

complement drh-3(tm1217) for fertility. DNA from the drh-3 region

was amplified from om55 animals and sequenced using standard

methods. A single substitution was detected in the drh-3 open reading

frame (ORF); this change is predicted to replace glycine with glutamic

acid at residue 133, leading to production of truncated product

(Figure 1B). We conclude that om55 is an allele of drh-3. Primers used

to sequence the drh-3 region were: OM5501F gcattgagatcgaaaggcag;

OM5501R catgttgttcaaactggcgc; drh3s1.1f cagagaagattctcggaatg;

drh3s1.1r catcacttcgtcagcaattc; drh3s1.2f ggtcgaagatttgctaaccg;

drh3s1.2r cggttagcaaatcttcgacc; drh3s2.1f cgaacatcccaaggaaagcc;

drh3s2.1r ccaacatgctcattgagctc; drh3s2.2f cgcattgatcaacgctccac;

drh3s2.2r caagcatagttcgacagctg; drh3s2.3f ggtctgacagcttcattgag;

drh3s3.1f ggtctcgatgttactgcatg; drh3s3.1r gcggcaaataggttcctctg;

drh3s3.2f catggtgttcgatccaagtg; drh-3s3.2r gatcgaatgaaaattgctcgg.

Indirect immunofluorescence
H3K9me2 single labeling was carried out as described [9] using

polyclonal anti-H3K9me2 (gift of C. D. Allis) at 1/500 dilution

and Alexa488-labeled secondary antibody (Invitrogen) at 1:200

dilution. H3K9me2/SYP-1 double labeling was performed as

follows. Gonads were dissected in 8 mL of 0.25 mM levamisole/

PBS on a poly-lysine treated slide. 8 mL of 6% paraformaldehyde

(PFA)/2X EGG buffer were added to the dissected tissue and a

Super-Frost slide (Fisher) immediately placed on top. The slide

sandwich was placed on dry ice for 15 minutes, cracked open, and

immediately washed with PBST. After a total of 3X 5 min washes

in PBST (1X PBS/0.1% Tween-20), the sample was blocked for

30 minutes in 30% goat serum (GS)/PBST. Monoclonal anti-

H3K9me2 (1:200 dilution, Abcam1220) and polyclonal anti-SYP-

1 (1:200 dilution, STD143 gift of A. Villeneuve) were added.

Tissue was incubated at 4uC overnight and then washed 3X
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10 min in PBST. Tissue was incubated with Alexa488-conjugated

goat anti-rabbit (1:200 dilution, Invitrogen) and Alexa568-

conjugated goat anti-mouse (1:400 dilution, Invitrogen) secondary

antibodies for 2 hours at room temperature and then washed 1X

in PBST, 2X in PBS. DAPI was added to the first PBS wash.

Images were captured on a Zeiss Axioscope and, in some cases, on

a Zeiss LSM 710 Confocal microscope.

H3K4me2 and H3K9me2 co-labeling was performed using

rabbit anti-H3K4me (gift of C. D. Allis) and mouse anti-

H3K9me2 (Abcam 1220). Dissected tissue was fixed for 5 min

in 2.5% PFA, washed 3X in PBST, blocked .30 min in PBST/

GS, and incubated overnight at room temp in primary antibody

diluted 1:200 (anti-H3K9me2) or 1:250 (anti-H3K4me2) in

PBST/GS. Washes and secondary antibody staining was carried

out as described above. HIM-3 and SYP-1 co-labeling was

performed using a similar protocol, except that dissected gonads

were fixed for 5 min in 1% PFA and post-fixed for 1 min with

220uC methanol prior to PBST washes. Rabbit anti-HIM-3 (gift

of M. Zetka) and guinea pig anti-SYP-1 (STD 165, gift of A.

Villeneuve) were each diluted 1/200. Alexa488-conjugated goat

anti-guinea pig (Invitrogen) was diluted 1/200.

Fluorescent in situ hybridization
The 5S rDNA probe was generated by amplification of a 1 kb

region of the 5S rDNA locus using published primers [82]. The

probe was labeled with DIG-11-dUTP using the DIG-Nick

Translation Kit (Roche Applied Science). FISH was carried out

as described [8]. A 1:200 dilution of anti-Digoxigenin-Fluorescein

antibody (Roche Applied Science) was used for probe detection.

Samples were examined using a DRMXA fluorescent microscope

(Leica); the images were acquired using a CCD camera (Q

Imaging) and processed using SimplePCI (Hamamutsu Corpora-

tion) software.

Phenotypic characterization
DAPI staining was used to characterize the germline develop-

mental phenotypes. To avoid variations in germline morphology

caused by aging, animals were harvested at a consistent

developmental stage (24 hours post-L4 stage at 20uC). Animals

were then dissected to expose the gonad. Fixation and staining

were performed as described [83]. Nuclei in mitosis and different

stages of meiosis were identified based on nuclear morphology as

described [37,83].

Supporting Information

Figure S1 Relative distribution of H3K9me2 and H3K4me2 in

him-8 XX germlines. Panels show meiotic nuclei co-labeled with

DAPI to visualize DNA and polyclonal antibody against

H3K9me2 and H3K4me2. In him-8 XX germ cells (as in

wildtype), H3K4me2 is not detected on the X chromosomes

(arrowheads) and is present at a high level on autosomes. In

contrast, H3K9me2 levels are high on the unpaired/unsynapsed

X chromosomes (arrowheads) and very low on autosomes. In csr-1,

ekl-1, and drh-3 mutants, one chromosomal region lacks H3K4me2

and contains a variable level of H3K9me2 (arrowheads); this is

presumably the X chromosome. Arrow indicates a chromosome

that lacks both H3K4me2 and H3K9me2. Other chromosomes

are enriched for H3K4me2 and contain a variable (low) level of

H3K9me2. Images were captured on a Zeiss Axioscope.

Found at: doi:10.1371/journal.pgen.1000624.s001 (3.11 MB TIF)

Figure S2 HIM-3 and SYP-1 distribution in csr-1, ekl-1, and drh-

3 XO mutants. Each panel shows pachytene nuclei from an XO

germ line co-labeled with DAPI to visualize DNA and with

polyclonal antisera to visualize HIM-3 and SYP-1. HIM-3

associates with all chromosomes. A single region fails to

accumulate SYP-1 (arrowheads), which is presumably the X

chromosome. The arrow in the csr-1 image indicates an example

of the large abnormal nuclei we also observe in ekl-1, drh-3, and

ego-1 mutants. See Text S1. Full genotypes were: him-8, csr-1, ekl-

1;him-8, and drh-3;him-8. Images were captured on a Zeiss LSM

710 confocal microscope.

Found at: doi:10.1371/journal.pgen.1000624.s002 (10.28 MB

TIF)

Figure S3 Co-localization of HIM-3 and SYP-1 on pachytene

chromosomes in XX csr-1 and ekl-1 mutants. Each panel shows

pachytene nuclei from an XX germ line co-labeled with DAPI

(A,E,I) to visualize DNA and with polyclonal antisera to visualize

HIM-3 (B,F,J) and SYP-1 (C,G,K). (D,H,L) Merged SYP-1 and

HIM-3 images. (A-D,I-L) HIM-3 and SYP-1 labeling is co-linear

in N2 wildtype and ekl-1 nuclei. (E–H) Some csr-1 nuclei contain

chromosomal regions with only HIM-3 or only SYP-1 (arrows). (I–

J) ekl-1 image contains an example of a large, putative

‘‘polyploidy’’ nucleus (arrow). Images were captured on a Zeiss

LSM 710 confocal microscope.

Found at: doi:10.1371/journal.pgen.1000624.s003 (9.20 MB TIF)

Figure S4 Co-localization of HIM-3 and SYP-1 on pachytene

chromosomes in XX drh-3;him-8 mutants. Each panel shows

pachytene nuclei from an XX germ line co-labeled with DAPI

(A,E) to visualize DNA and with polyclonal antisera to visualize

HIM-3 (B,F) and SYP-1 (C,G). (D,H) Merged SYP-1 and HIM-3

images. (A–D) him-8 and (E–H) drh-3;him-8 nuclei contain 1–2

regions that lack SYP-1 (arrows), which presumably correspond to

the X chromosomes. Images were captured on a Zeiss LSM 710

confocal microscope.

Found at: doi:10.1371/journal.pgen.1000624.s004 (5.52 MB TIF)

Table S1 Distribution of LGV FISH signals in csr-1, ekl-1, and

drh-3 mutants. In csr-1, ekl-1, and drh-3 mutants, nuclei with

abnormal chromosomal morphology are scattered within the

pachytene zone as discussed in Text S1. The number of FISH foci

was counted in each nucleus within the pachytene zone regardless

of chromosomal morphology. Independent values are given for

XX and XO germ lines. N, the number of pachytene zone nuclei

that were counted.

Found at: doi:10.1371/journal.pgen.1000624.s005 (0.04 MB

DOC)

Table S2 Single LGV FISH signals in morphologically pachy-

tene nuclei. The number of FISH foci was counted in nuclei with

recognizable pachytene morphology. Independent values are

given for XX and XO germ lines. See Text S1 for discussion.

N, number of nuclei counted.

Found at: doi:10.1371/journal.pgen.1000624.s006 (0.03 MB

DOC)

Table S3 The majority of large, diffuse nuclei within the

pachytene zone contained multiple FISH foci. The percent of

abnormal, large nuclei containing multiple FISH foci is indicated.

Independent values are given for XX and XO germ lines. Note

that some abnormal nuclei contained only a single FISH signal.

See Text S1 for discussion. N, number of nuclei counted. NA, not

applicable.

Found at: doi:10.1371/journal.pgen.1000624.s007 (0.03 MB

DOC)

Text S1 Supplemental information and references.

Found at: doi:10.1371/journal.pgen.1000624.s008 (0.04 MB

DOC)
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